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Communication consumes 35 times more energy than
computation in the human cortex, but both costs are
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Darwinian evolution tends to produce energy-efficient outcomes.
On the other hand, energy limits computation, be it neural and
probabilistic or digital and logical. Taking a particular energy-
efficient viewpoint, we define neural computation and make
use of an energy-constrained computational function. This func-
tion can be optimized over a variable that is proportional to
the number of synapses per neuron. This function also implies
a specific distinction between adenosine triphosphate (ATP)-
consuming processes, especially computation per se vs. the com-
munication processes of action potentials and transmitter release.
Thus, to apply this mathematical function requires an energy
audit with a particular partitioning of energy consumption that
differs from earlier work. The audit points out that, rather than
the oft-quoted 20 W of glucose available to the human brain,
the fraction partitioned to cortical computation is only 0.1 W of
ATP [L. Sokoloff, Handb. Physiol. Sect. I Neurophysiol. 3, 1843–
1864 (1960)] and [J. Sawada, D. S. Modha, “Synapse: Scalable
energy-efficient neurosynaptic computing” in Application of Con-
currency to System Design (ACSD) (2013), pp. 14–15]. On the other
hand, long-distance communication costs are 35-fold greater, 3.5
W. Other findings include 1) a 108-fold discrepancy between bio-
logical and lowest possible values of a neuron’s computational
efficiency and 2) two predictions of N, the number of synaptic
transmissions needed to fire a neuron (2,500 vs. 2,000).

energy-efficient | bits per joule | optimal computation | brain energy
consumption | neural computation

The purpose of the brain is to process information, but that
leaves us with the problem of finding appropriate definitions

of information processing. We assume that given enough time
and given a sufficiently stable environment (e.g., the common
internals of the mammalian brain), then Nature’s constructions
approach an optimum. The problem is to find which function
or combined set of functions is optimal when incorporating
empirical values into these function(s). The initial example in
neuroscience is ref. 1, which shows that information capacity
is far from optimized, especially in comparison to the optimal
information per joule which is in much closer agreement with
empirical values. Whenever we find such an agreement between
theory and experiment, we conclude that this optimization, or
near optimization, is Nature’s perspective. Using this strategy,
we and others seek quantified relationships with particular forms
of information processing and require that these relationships
are approximately optimal (1–7). At the level of a single neuron,
a recent theoretical development identifies a potentially optimal
computation (8). To apply this conjecture requires understand-
ing certain neuronal energy expenditures. Here the focus is on
the energy budget of the human cerebral cortex and its primary
neurons. The energy audit here differs from the premier ear-
lier work (9) in two ways: The brain considered here is human
not rodent, and the audit here uses a partitioning motivated
by the information-efficiency calculations rather than the clas-
sical partitions of cell biology and neuroscience (9). Importantly,

our audit reveals greater energy use by communication than
by computation. This observation in turn generates additional
insights into the optimal synapse number. Specifically, the bits
per joule optimized computation must provide sufficient bits per
second to the axon and presynaptic mechanism to justify the
great expense of timely communication. Simply put from the
optimization perspective, we assume evolution would not build a
costly communication system and then not supply it with appro-
priate bits per second to justify its costs. The bits per joule are
optimized with respect to N , the number of synaptic activations
per interpulse interval (IPI) for one neuron, where N happens to
equal the number of synapses per neuron times the success rate
of synaptic transmission (below).

To measure computation, and to partition out its cost, requires
a suitable definition at the single-neuron level. Rather than the
generic definition “any signal transformation” (3) or the neural-
like “converting a multivariate signal to a scalar signal,” we
conjecture a more detailed definition (8). To move toward this
definition, note two important brain functions: estimating what is
present in the sensed world and predicting what will be present,
including what will occur as the brain commands manipula-
tions. Then, assume that such macroscopic inferences arise by
combining single-neuron inferences. That is, conjecture a neu-
ron performing microscopic estimation or prediction. Instead of
sensing the world, a neuron’s sensing is merely its capacitive
charging due to recently active synapses. Using this sampling
of total accumulated charge over a particular elapsed time, a
neuron implicitly estimates the value of its local latent variable,
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a variable defined by evolution and developmental construc-
tion (8). Applying an optimization perspective, which includes
implicit Bayesian inference, a sufficient statistic, and maximum-
likelihood unbiasedness, as well as energy costs (8), produces
a quantified theory of single-neuron computation. This theory
implies the optimal IPI probability distribution. Motivating IPI
coding is this fact: The use of constant amplitude signaling, e.g.,
action potentials, implies that all information can only be in IPIs.
Therefore, no code can outperform an IPI code, and it can equal
an IPI code in bit rate only if it is one to one with an IPI code. In
neuroscience, an equivalent to IPI codes is the instantaneous rate
code where each message is IPI−1. In communication theory,
a discrete form of IPI coding is called differential pulse posi-
tion modulation (10); ref. 11 explicitly introduced a continuous
form of this coding as a neuron communication hypothesis, and
it receives further development in ref. 12.

Results recall and further develop earlier work concerning a
certain optimization that defines IPI probabilities (8). An energy
audit is required to use these developments. Combining the the-
ory with the audit leads to two outcomes: 1) The optimizing N
serves as a consistency check on the audit and 2) future energy
audits for individual cell types will predict N for that cell type, a
test of the theory. Specialized approximations here that are not
present in earlier work (9) include the assumptions that 1) all
neurons of cortex are pyramidal neurons, 2) pyramidal neurons
are the inputs to pyramidal neurons, 3) a neuron is under con-
stant synaptic bombardment, and 4) a neuron’s capacitance must
be charged 16 mV from reset potential to threshold to fire.

Following the audit, the reader is given a perspective that may
be obvious to some, but it is rarely discussed and seemingly con-
tradicts the engineering literature (but see ref. 6). In particular, a
neuron is an incredibly inefficient computational device in com-
parison to an idealized physical analog. It is not just a few bits
per joule away from optimal predicted by the Landauer limit, but
off by a huge amount, a factor of 108. The theory here resolves
the efficiency issue using a modified optimization perspective.
Activity-dependent communication and synaptic modification
costs force upward optimal computational costs. In turn, the bit
value of the computational energy expenditure is constrained
to a central limit like the result: Every doubling of N can pro-
duce no more than 0.5 bits. In addition to 1) explaining the 108

excessive energy use, other results here include 2) identifying
the largest “noise” source limiting computation, which is the sig-
nal itself, and 3) partitioning the relevant costs, which may help
engineers redirect focus toward computation and communica-

tion costs rather than the 20-W total brain consumption as their
design goal.

Results
Energy Audit.
Adenosine triphospate use for computation and communication.
Microscopic energy costs are based on bottom–up calculations
for adenosine triphosphate (ATP) consumption (9). A total of
36,000 J/mol ATP (13) implies watts. As derived below, compu-
tation consumes ca. 0.1 ATP-watts per cortex or 1/200th of the
nominal and oft-quoted 20 W that would be produced by com-
plete oxidation of the glucose taken up by the brain (1). Fig. 1
compares cortical communication costs to computational costs.
Also appearing is an energy consumption labeled (SynMod+).
What ref. 14 calls “housekeeping” is a hypothesis on its part; an
alternative hypothesis is inspired by and consistent with results
from developing brain (15). This category seems to be dominated
by costs consistent with synaptogenesis (e.g., growth and process
extension via actin polymerization and via new membrane incor-
poration, membrane synthesis and its axo- and dendro-plasmic
transport, and astrocytic costs); a small fraction of SynMod+ is
time-dependent “maintenance.” Here SynMod+ is calculated by
subtracting the bottom–up calculated communication and com-
putation ATP consumption from available ATP, a top–down
empirical partitioning (Table 1).

For some, the rather large cost of communication might be
surprising but apparently is necessary for suitable signal veloc-
ities and information rates (1, 16–19). Combining gray matter
(GM) communication costs with the total white matter (WM)
costs accounts for 71%, 3.52 W (Fig. 2), of the total 4.94
ATP-watts per cortex, compared to 2% for computation. Sup-
posing that all WM costs are essentially communication costs
(including oligodendrocyte/myelination costs), then the ratio for
communication vs. computation is 35:1.
Computation costs in the human brain. The energy needed to
recover ion gradients from the total excitatory synaptic current
flows per IPI determines the cost of computation for that IPI.
Various quantitative assumptions feeding into subsequent calcu-
lations are required (Materials and Methods and SI Appendix),
but none are more important than the generic assumption that
the average firing rate of each input to a neuron is the same as
the average firing rate out of that neuron (4). Via this assump-
tion, and assuming 104 synapses per neuron and a 75% failure
rate, the aggregate effects of inhibition, capacitance, and post-
synaptic K+ conductances are implicitly taken into account.

AMPAR NMDAR
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

W

Fig. 1. Computation costs little compared to communication. Communication alone accounts for more than two-thirds of the available 4.94 ATP-W (Table
1), with slightly more consumption due to WM than to GM (big pie chart). Computation, the smallest consumer, is subpartitioned by the two ionotropic
glutamate receptors (bar graph). SynMod+ includes astrocytic costs, process extension, process growth, axo- and dendro-plasmic transport of the membrane
building blocks, and time-independent housekeeping costs (although this last contributor is a very small fraction). The small pie chart subpartitions GM
communication. See Results and Materials and Methods for details. WM communication includes its maintenance and myelination costs in addition to
resting and action potentials.
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Table 1. Rudimentary partitioning, glucose to ATP

Watts Unoxidized
Brain/region (complete (equivalent Heat
(weight, g) oxidation) watts) watts ATP-watts

Whole brain (1,495) 17.0 1.86 8.89 6.19
Cerebellum (154) 1.77 0.19 0.93 0.65
Other regions (118) 1.65 0.18 0.87 0.60
Forebrain cortex (1,223) 4.94
White (590) 5.07 0.56 2.66 1.85
Gray (633) 8.45 0.93 4.43 3.09

See Materials and Methods and SI Appendix, Tables S1–S8 for details and
citations.

This aggregation is possible since increases of any of these
parameters merely lead to smaller depolarizations per synap-
tic activation but cause little change in synaptic current flow
per excitatory synaptic event. Indeed, such attenuating effects
are needed to make sense of several other variables. A quick
calculation helps illustrate this claim.

An important starting point for computational energy cost is
the average number of excitatory synaptic activations to fire a
cortical neuron. Assume the neuron is a pyramidal neuron and
that its excitatory inputs are other pyramidal neurons. There-
fore, the mean firing rate of this neuron is equal to the mean
firing rate of each input. Thus, the threshold will be the num-
ber of input synapses times the quantal success rate (4); i.e.,
ca. 104 · 0.25 = 2,500 =N because on average each input fires
once per IPI out. Even after accounting for quantal synaptic fail-
ures, inhibition is required for consistency with 2,500 excitatory
events propelling the 16-mV journey from reset to threshold.
Activation of AMPA receptors (AMPARs) and NMDA recep-
tors (NMDARs) provides an influx of three Na+ for every two
K+ that flow out. With an average total AMPAR conductance
of 200 pS, there are 114.5 pS of Na+ per synaptic activation
(SA). Multiplying this conductance by the 110-mV driving force
on Na+ and by the 1.2-ms SA duration yields 15.1 fC per SA.
Dividing this total Na+ influx by 3 compensates for the two K+

that flow out for every three Na+ that enter; thus, the net charge
influx is 5.04 fC per SA. We assume that the voltage-activated,
glutamate-primed NMDARs increases this net flux by a factor
of 1.5, yielding 7.56 fC per SA (see Materials and Methods and
SI Appendix, Tables S3–S5 for more details and the ATP costs).
Taking into account the 2,500 synaptic activations per IPI yields
18.9 pC per IPI. Using a 750-pF value for a neuron’s capacitance,
this amount of charge would depolarize the membrane poten-
tial 25.2 mV rather than the desired 16 mV. Thus, the excitatory
charge influx must be opposed by inhibition and K+ conduc-
tances to offset the total 7.56-fC net positive influx. Most simply,
just assume a divisive inhibitory factor of 1.5. Then the num-
bers are all consistent, and the average depolarization is 6.4 µV
per synaptic activation. Because each net, accumulated charge
requires one ATP to return the three Na+ and two K+, the com-
putational cost of the 16-mV depolarization is 6.67 · 10−12 J per
neuron per spike; i.e., required computational power for each
neuron spike of cortex 6.67 · 10−12 · 1.5 · 1010 = 0.10 W.
Communication costs. As quantified in Materials and Methods
(also SI Appendix, Tables S3 and S5), the GM long-distance
communication cost of 1.67 W (Fig. 1) includes the partitioned
costs of axonal resting potentials (APs) and presynaptic transmis-
sion (neurotransmitter recycling and packaging, vesicle recycling,
and calcium extrusion). The neurotransmission costs assume a 1-
Hz mean neuron firing rate and a 75% failure rate. Next using
ref. 14, the calculation assumes one vesicle is released per non-
failed AP. Differing from ref. 14 while closer to earlier work (9),
assume there is the same Ca influx with every AP (20). Further,
also use a more recent measurement of Na+-K+ overlapping

current flows of the AP, 2.38 (21). Of all of the difficult but influ-
ential estimates, none is more challenging and important than
axonal surface area (Materials and Methods).
Firing rate. In regard to average firing rate, we postulate an aver-
age value of one pulse per neuron per decision-making interval
(DMI), which we assume as 1 s.

As Fig. 2 indicates, the combined WM and GM communi-
cation cost at 1 Hz is 3.52 W. Computational costs are only a
very small fraction of frequency-dependent costs. Calculation of
SynMod+ is not possible and, as explicated in Discussion, we dis-
credit the ouabain manipulation others (9, 22) use to estimate it.
The value here is arrived at by differencing the calculated and
measured costs from the available energy (SI Appendix, Fig. S1).

Using a firing rate of 1 Hz and 1.5 · 1010 neurons per cor-
tex, a bottom–up calculation for the excitatory postsynaptic ion
flux per AP per cortex yields 0.10 W. The linear relationship
between firing rate and energy consumption has a substantial
baseline energy consumption of 1.09 W (y-axis intercept). Appar-
ently resting axon conductance (23) is required for a resting
potential and stable behavior (24). In the case of the dendrite,
computational costs are zero at zero firing rate, a theoretical
limit result which, as argued earlier, is a nonsense practical sit-
uation. However, dendritic leak is assumed to be essentially zero
since we assume, perhaps controversially (cf. ref. 9), that a corti-
cal neuron is under constant synaptic bombardment and that all
dendrosomatic conductances are due to synaptic activation and
voltage-activated channels. That is, a neuron resets after it fires
and immediately starts depolarizing until hitting threshold.

Computational costs are very sensitive to failure rates, which
for Fig. 2 are fixed at 75%, whereas communication is only
slightly sensitive to the synaptic failure rate (see below for more
details).
An energy-use partitioning based on glucose oxidation. The oft-
repeated brain energy consumption of 20 W is not simply the cost
of computation and communication, thus requiring an appro-
priate partitioning (Table 1). The 17 W of glucose potential
energy from recent positron emission tomography (PET) scan
research (25) replaces Sokoloff’s 20 W from the 1950s. The PET
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Fig. 2. Energy use increases linearly with average firing rate, but for rea-
sonable rates, computation (Comp) costs much less than communication
(Comm). Comparing the bottom (red) curve (GM communication costs) to
the top (blue) curve (GM communication cost plus computational costs) illus-
trates how little computational costs increase relative to communication
costs. The y-intercept value is 1.09 W for resting potential. The open circle
plotting SynMod+ + GMComm + Comp adds the 1.32 W of GM SynMod+

to the 1.77 W of GMComm + Comp at 1 Hz. The solid circle, labeled
WMComm + GMComm, shows the value of the combined communication
cost, cortical GM at 1 Hz, and the total cortical white matter cost. See
Materials and Methods for further details.
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scan research produces regional per-gram values, and these val-
ues are scaled by the regional masses (26), allowing regional
estimates (SI Appendix, Table S1). Arguably, 11% of the total
glucose uptake is not oxidized (27) (some arteriovenous differ-
ences obtain a smaller percentage; SI Appendix). After removing
the 8.89 W for heating, there are only 6.19 ATP-W available
to the whole brain. The regional partitioning implies cerebral
gray consumes 3.09 ATP-W, which is split between computation,
communication, and SynMod+. After direct calculation of com-
munication and computational costs, the remaining GM energy
is allocated to SynMod+.
A specialized partitioning. The ultimate calculation of bits
per joule requires a bipartite partition of action potential-
driven costs: Those independent of N , A := EWMAP + EGMAxAP +
ESynModGrow≈ 1.23 + 0.45 + 1.08 = 2.76 J/s per cortex vs.
those scaled by N , B := ECOMP + EPre + ENSynMod + EPreNaAP≈
0.10 + 0.11 + 0.11 + 0.02 = 0.34 J/s per cortex. For the three
constituents of A, WMAP is white matter action potential
dependent; GMAxAP is gray matter action potential depen-
dent; and SynModGrow is action potential dependent and
combines all of the functions that underlie synaptogenesis
and nonsynaptic, firing-dependent maintenance. For the four
N -proportional functions, COMP is postsynaptic ionotropic
activation, Pre is presynaptic Ca2+ and transmitter release
functions, PreNaAP is partial presynaptic depolarization driven
by the axonal AP, and NSynMod is N -proportional synaptic
modifications including synaptic metabotropic activation. Note
that ESynMod+ = ESynModGrow + ENSynMod + EPlus≈ 1.08 + 0.11 + 0.12,
where EPlus is the time-dependent maintenance cost. As in
ref. 8, the purely time-dependent costs, e.g., EPlus and resting
potential, are charged to the decision-making process of the
system, not to an individual neuron. Finally, to use A and
B , they are rescaled to joules per IPI per neuron (divide by
the number of neurons firing in 1 s) and, additionally for B ,
a rescaling to dependence on synapse number (multiply by
N ÷ 2,500; thus, E(Λ,T ) := (A+N ·B/2,500) ·E [T ]÷n ,
where E [T ] is the average IPI and n is the number of cortical
neurons.

A Baseline for Maximally Efficient Computation.
A simplistic model relates physics to neuroscience. For the sake
of creating a baseline, initial comparison, and for further under-
standing of just what “computation” can mean, suppose a neu-
ron’s computation is just its transformation of inputs to outputs.
Then, quantifying the information passed through this transfor-
mation (bits per second) and dividing this information rate by the
power (W = J/s) yields bits per joule. This ratio is our efficiency
measure. In neuroscience, it is generally agreed that Shannon’s
mutual information (MI) is applicable for measuring bit rate of
neural information processing, neural transformations, or neural
communication (3, 4, 28–33). Specifically, using mutual informa-
tion and an associated rate of excitatory postsynaptic currents of
a single neuron produces a comparison with the optimal bits per
joule for computation as developed through physical principles.
To understand the analogy with statistical mechanics, assume the
only noise is wideband thermal noise, kT ≈ 4.3 · 10−21 J (Boltz-
mann’s constant times absolute temperature, T = 310 K). The
bits per joule ratio can be optimized to find the lowest possible
energetic cost of information, which is (kT ln 2)−1, the Landauer
limit (34).

To give this derivation a neural-like flavor, suppose a perfect
integrator with the total synaptic input building up on the neu-
ron’s capacitance. Every so often the neuron signals this voltage
and resets to its resting potential. Call the signal Vsig and, rather
unlike a neuron, let it have mean value (resting potential) of
zero. That is, let it be normally distributed N (0,σ2

sig =E [V 2
sig]).

The thermal noise voltage fluctuation is also a zero-centered nor-
mal distribution, N (0,σ2

noise). Expressing this noise as energy on

the membrane capacitance, Cmσ
2
noise

2
= kT

2
⇒σ2

noise = kT
Cm

(35–37).
Then using Shannon’s result, e.g., theorem 10.1.1 in ref. 38, the

nats per transmission are 1
2

ln(1 +
σ2

sig

σ2
noise

) = 1
2

ln(1 +
CmE [V 2

sig]

kT )

(with natural logarithms being used since we are performing a
maximization, thus nats := bits· ln 2). Converting to bits, and call-
ing this result the mutual information channel capacity, CMI =

(2 ln 2)−1 ln(1 +
CmE [V 2

sig]

kT ).
Next we need the energy cost, the average signal joules per

transmission developed on the fixed Cm by the synaptic acti-

vation, E :=
CmE [V 2

sig]

2
. Dividing the bits per second CMI by the

joules per second E yields the bits per joule form of inter-

est: CMI
E = 2

(CmE [V 2
sig])
· 1

2 ln 2
ln(1 +

CmE [V 2
sig]

kT ). This ratio is rec-

ognized as the monotonically decreasing function ln(1+x)
cx

with
x , c> 0. Therefore, maximizing over E [V 2

sig] but with the restric-
tion E [V 2

sig]> 0, this is a limit result implying an approach to zero
bits per second. That is,

lim
E [V 2

sig]→0

CMI
E = 1

CmE [V 2
sig]

1
ln 2

CmE [V 2
sig]

kT

= (kT ln 2)−1≈ 3.37 · 1020 bits per joule.
Two comments seem germane. First, physicists arrived at this

value decades ago in their vanquishing of Maxwell’s demon and
its unsettling ability to create usable energy from randomness
(34). In their problem, the device (the demon) is not obviously
computational in the neural sense; the demon just repeatedly
1) senses, 2) stores, and 3) operates a door based on the stored
information and then 4) erases its stored information as it con-
tinues to separate fast molecules from the slower ones (39, 40)
(Fig. 3). Moreover, even after simplifying this cycle to steps
1, 2, and 4, physicists do see the demon’s relevance to digital
computation. Such a cycle is at the heart of modern computers
where computation occurs through repetitive uses, or pairwise
uses, of the read/write/erase cycles. For example, bit shifting
as it underlies multiplication and the pairwise sensing and bit
setting (then resetting) of binary, Boolean logical operations
reflect such cycles. Thus, as is well known from other arguments
(34, 41), the limit result of physics sets the energy-constraining
bound on nonreversible digital computation. Regarding step 3,
it would seem that if the demon communicates and controls
the door as slowly as possible (i.e., the limit of time going to
infinity), there is no need to assign an energy cost to these
functions.

Despite a nonsurprising qualitative comparison, there is a sec-
ond insight. Compared to the estimates here of a neuron cycling
from reset to firing to reset, this physics result is unimagin-
ably more efficient, not just 5 or 10 times more, but 108-fold
more efficient. Suppose that the computational portion of a
human cortical neuron has capacitance Cm ≈ 750 pF (obtained
by assuming the human neuron’s surface area is about three
times a rat’s pyramidal value of 260 pF) (42) and suppose this
neuron resets to Vrst =−0.066 V while the firing threshold is
Vθ =−0.050 V. Then in the absence of inhibition, the excitatory
synaptic energy needed to bring a neuron from reset to thresh-
old is 1

2
Cm(V 2

rst−V 2
θ )≈ 1.4 · 10−12 J per spike. Assuming 4 bits

per spike, the bits per joule are 2.9 · 1012. Compared to the opti-
mal limit set by physics, this efficiency value is 108 times less
energy efficient, a seemingly horrendous energy efficiency for a
supposedly optimized system.
The disagreement reorients our thinking. In the context of under-
standing neural computation via optimized energy use, this
huge discrepancy might discourage any further comparison with
thermal physics or the use of mutual information. It could
even discourage the assumption that Nature microscopically
optimizes bits per joule. But let us not give up so quickly.

4 of 12 | PNAS
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Fig. 3. Maxwell’s demon cycle is analogous to the neuron’s computational cycle. The initial state in the demon cycle is equivalent to the neuron at rest.
The demon sensing fast molecules is analogous to the synaptic activations received by the neuron. Whereas the demon uses energy to set the memory and
then opens the door for a molecule, the neuron stores charge on the membrane capacitance (Cm) and then pulses out once this voltage reaches threshold.
Simultaneous with such outputs, both cycles then reset to their initial states and begin again. Both cycles involve energy being stored and then released
into the environment. The act of the demon opening the door is ignored as an energy cost; likewise, the neuron’s computation does not include the cost of
communication. Each qi is a sample and represents the charge accumulated on the plasma membrane when synapse i is activated.

Note that the analogy between the four-step demon and an
abstract description of neural computation for one IPI is rea-
sonable (Fig. 3). That is, 1) excitatory synaptic events are the
analog of sensing, 2) these successive events are stored as charge
on the plasma membrane capacitance until threshold is reached,
at which point 3) a pulse-out occurs, and then 4) the “memory”
on this capacitor is reset and the cycle begins anew. Nevertheless,
the analogy has its weak spots.

The disharmony between the physical and biological per-
spectives arises from the physical simplifications that time is
irrelevant and that step 3 is cost-free. While the physical simpli-
fications ignore costs associated with step 3, biology must pay for
communication at this stage. That is, physics looks at each com-
putational element only as a solitary individual, performing but
a single operation. There is no consideration that each neuron
participates in a large network or even that a logical gate must
communicate its inference in a digital computer in a timely man-
ner. Unlike idealized physics, Nature cannot afford to ignore the
energy requirements arising from communication and time con-
straints that are fundamental network considerations (43) and
fundamental to survival itself (especially time) (18, 19).

According to the energy audit, the costs of communication
between neurons outweigh computational costs. Moreover, this
relatively large communication expense further motivates the
assumption of energy-efficient IPI codes (i.e., making a large
cost as small as possible is a sensible evolutionary prioritization).
Thus, the output variable of computation is assumed to be the
IPI or, equivalently, the spike generation that is the time mark of
the IPI’s endpoint.

Furthermore, any large energy cost of communication sensi-
bly constrains energy allocated to computation. Recalling our
optimal limit with asymptotically zero bits per second, it is unsus-
tainable for a neuron to communicate minuscule fractions of a bit
with each pulse out. To communicate the maximal bits per spike
at low bits per second leads to extreme communication costs
because every halving of bits per second requires at least a dou-
bling of the number of neurons to maintain total bits per second
which in turn requires more space. This space problem aris-
ing from a larger number of neurons is generally recognized as
severely constraining brain evolution and development as well as
impacting energy use (44–49). Such an increase of neuron num-
bers moves neurons farther away from each other. In turn, axons
must be longer for the same connectivity. Moreover, to prevent
increased communication delays requires wider axons to com-

pensate for the longer axons. Such delays undermine the timely
delivery of information (18, 19), which we assume has evolved to
its own optimization for any one species. (See SI Appendix for a
more fully developed model including assumptions. This model
shows that communication costs rise much more than computa-
tional costs decrease.) This space problem, arising from a larger
number of neurons, is generally recognized as severely constrain-
ing brain evolution and development as well as impacting energy
use (44–49). It is better for overall energy consumption and effi-
ciency to compute at a larger, computationally inefficient bits per
IPI that will feed the axons at some requisite bits per second,
keeping neuron number at some optimal level. To say it another
way, a myopic bits per joule optimization can lead to a nonsense
result, such as zero bits per second and asymptotically an infinite
number of neurons.

Nevertheless, assuming efficient communication rates and
timely delivery that go hand in hand with the observed com-
munication costs, there is still reason to expect that neu-
ronal computation is as energy efficient as possible in sup-
plying the required bits per second of information to the
axons. The problem then is to identify such a computation
together with its bits per joule dependence and its inferred bits
per second.

A Neurally Relevant Optimization.
How close is the optimized N bits per joule to 2,500? The com-
putations of this section combined with the earlier energy audit
imply an efficiency of ca. 1.4 · 1012 bits per computational joule
and fewer than 7.5 bits per IPI for neurons completing their
first IPI. Comparing the curves of Fig. 4, the bits per joule
maximization that accounts for all spike-dependent costs pro-
duces the agreeable result N ≈ 2,000, which is not far from
the 2,500 derived earlier. By comparison, the purely computa-
tional perspective of costs, Fig. 4B, indicates the exponentially
increasing efficiency is reached as a limit N → 0. Fig. 4A also
indicates the optimization result is robust around the optimiz-
ing N , changing little over a sevenfold range; likewise, bits
per IPI are robust. In sum for N = 2,000, the neuron compu-
tational efficiency is inferior to the demon by ca. 108 but is
optimal when other costs are considered. In fact, more detailed
considerations below suggest slightly downgrading bit-rate
estimates.

Using the notation Λ for the random variable (RV) of the
total, unfailed input intensity (events per second) to a neuron

Levy and Calvert
Communication consumes 35 times more energy than computation in the human cortex, but both
costs are needed to predict synapse number
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A

B

Fig. 4. Bits per joule per neuron at optimal N. (A) The bits per joule func-
tion, Eq. [1], is concave and reaches a maximum when N is ca. 2,000. This
efficiency decreases little more than 5% over a sevenfold range away from
this 2,000. At this optimum there are 7.48 bits per spike. (B) The optimal
N implies 1.4 · 1012 bits per computational joule. B is calculated by chang-
ing Eq. [1]’s denominator to E[T]N · B÷ (2,500 · n) instead of E[T](A + N ·
B/2,500)÷ n.

and Λ̂ the RV that is the neuron’s estimate, Fig. 4A illustrates
the concave function being maximized,

I (Λ;T )

E(Λ,T )
=

I (Λ; Λ̂)

E(Λ,T )

=

log2(ln(
λ̂mx

λ̂mn

)) + 1
2

log2(
(N + 1)2

N
)− 1

2
log2(2πe)

(A+N ·B/2,500) ·E [T ]÷n
, [1]

where I (Λ;T ) and its equivalent I (Λ; Λ̂) are the bits per IPI
of information gain (8). This gain arises from an additive neu-
ron communicating its implicitly estimated latent variable’s value
Λ̂ = λ̂ as a first-hitting time, T = t (i.e., RV T producing one par-
ticular realization, t). The denominator, previously introduced
at the end of the energy audit, is the joules per IPI per neuron

as a function N . The ratio
λ̂mx

λ̂mn

is essentially the ratio of the

maximum rate of synaptic activation to the baseline rate.
I (Λ;T ), derived in ref. 8, requires Corollary 2 (below) for

conversion to I(Λ; Λ̂). Moreover, attending this result are the
related results, Lemma 2b and Corollary 1, which enhance our
understanding of the neuron’s computation. Just before these
mathematical developments, we recall and interpret some results
of ref. 8, one of which sheds light on the 108 discrepancy with the
demon result.
Deeper insights into the defined computation. As noted in the
Introduction and developed in detail elsewhere (8), the neu-

ron’s computation is an estimation of its scalar latent variable
Λ =λ. I (Λ;T ) =EΛ,T [ p(T |Λ)

p(T)
] is the information gain for a

Bayesian performing estimation (50). Written this way, the rel-
ative entropy starts with the prior p(t) and via sampling, i.e.,
synaptic activations, implicitly arrives at a likelihood p(t |λ).
The form of this conditional probability density is a maximum-
entropy development, which is the best distribution in the sense
of maximizing a gaming strategy (51). The maximum-entropy
constraints are energy and unbiasedness. This likelihood also
carries all of the information of sampling.

Defining 1) θ as threshold to fire, 2) E [Vsyn] as the average
size of the synaptic event arriving at the initial segment, and 3)
E [V 2

syn] as its second moment, from equations 12 and 6 of ref. 8,
p(t |λ)=

θ√
πλt3E [V 2

syn|λ]
exp(2

θE [Vsyn|λ]

E [V 2
syn|λ]

− λtE [Vsyn|λ]2

E [V 2
syn|λ]

− θ2

λtE [V 2
syn|λ]

).

While the only consistent marginal distribution we have yet to
discover is p(λ) = (λ log( λmx

λmn
))−1 with 0<λmn <λ<λmx <∞,

which is enough to infer the form of p(t) and of p(λ|t).
Importantly, the IPI, t , is a sufficient statistic, which is infor-

mation equivalent to the likelihood p(t |λ) and so is the latent
RV estimate, λ̂= N2

(N+1)t
. The conditional mean-squared error

of the estimate is E [(Λ̂−Λ)2|λ] = λ2(N+2)

(N+1)2
as Corollary 1 here

demonstrates. Thus, we not only define a neuron’s computation,
but also can understand its performance as a statistical inference.

Parsing Eq. [1], the information rate increases at the
rate of ca. 1

2
log2(N ) while energy consumption increases in

proportion to N . This disadvantageous ratio and the large
optimizing N help explain the demon’s superior efficiency.
Moreover, increasing the noncomputational demands such that
A÷B increases leads to a larger optimal value of N and
vice versa. Regardless, Corollaries 1 and 2 of the next sub-
section clearly show that the energy devoted to computation,
or other N -dependent energy consumers, restricts the preci-
sion of a neuron’s estimation and restricts the information a
neuron generates when the neuron is required to be energy
optimal.
Mathematical derivations. As an approximation of a result in
ref. 52, assume an empirical distribution of synaptic weights
such that the second noncentral moment is equal to twice the
mean squared (e.g., an exponential distribution). Note also that
θ can be written as the product N , the average number of
synaptic increments, multiplied by the average synaptic incre-
menting event E [Vsyn|λ] (with inhibition and capacitance taken
into account) (8). That is, θ=N ·E [Vsyn|λ]. Putting this assump-
tion to work, we obtain a simplification, and there are two new
corollaries based on the above p(t |λ).

Lemma 1. p(t |λ) =N (2πλt3)−1/2 exp(−λt
2
− N2

2λt
+N ).

Proof: Start with p(t |λ) given earlier, substitute using θ=N ·
E [Vsyn|λ], and then note that E [Vsyn|λ]2

E [V 2
syn|λ]

= 1
2

.

At this point there is an instructive and eventually simplify-
ing transform to create p(λ̂|λ) from p(t |λ). The transform arises
from the unbiased requirement, one of the constraints producing
the earlier optimization results (8). As a guess suppose the unbi-
ased estimate is λ̂= N2

(N+1)t
or equivalently t = N2

(N+1)λ̂
and then

use this relation to transform p(t |λ) to p(λ̂|λ).

Lemma 2a. p(λ̂|λ) =√
N + 1(2πλλ̂)−1/2 exp(− λN2

2(N+1)λ̂
− λ̂(N+1)

2λ
+N ).

Lemma 2b. E [Λ̂|λ] =λ= N2

N+1
·E [T−1|λ].
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So λ̂= N2

(N+1)t
is indeed the desired unbiased estimate, which

has a particular mean-squared error.

Corollary 1. E [(Λ̂−Λ)2|λ] = λ2(N+2)

(N+1)2
.

Proofs: See Materials and Methods.
As Corollary 1 shows, devoting more energy to computation by

increasing N reduces the error of the estimate. Specifically, the
standard deviation decreases at the rate of 1/

√
N . Of course,

computational costs increase in direct proportion to N .
Corollary 1 adds additional perspective to our definition

of a neuron’s computation as an estimate. Furthermore, the
new likelihood, p(λ̂|λ), is particularly convenient for calculat-
ing information rates, a calculation which requires one more
result. That result is the marginal distribution of Λ̂. Because
the only known consistent density (and arguably the simplest) is
p(λ) = (λ log( λmx

λmn
))−1, the estimate’s marginal density is simply

approximated via the following:

Lemma 3. p(λ̂) =
∫ λmx

λmn
p(λ)p(λ̂|λ)dλ≈ (λ̂ ln( λmx

λmn
))−1,

where the approximation arises by the near identity of the
integral to p(λ) assuming the range of λ and λ̂ is the same.
Moreover, the lack of λ̂ bias for all conditioning values of λ
hints that the approximation should be good. In fact, using
Mathematica at its default precision, numerical evaluation
of

∫ λmx

λmn
p(λ)p(λ̂|λ)dλ indicates zero difference between this

integral and (λ̂ ln( λmx
λmn

))−1.
The information rate per first IPI can now be evaluated.
Corollary 2. ET ,Λ[log2

p(T |Λ)
p(T)

] =EΛ̂,Λ[log2
p(Λ̂|Λ)

p(Λ̂)
]

= log2(ln( λ̂mx

λ̂mn
)) + 1

2
log2( (N+1)2

2πeN
) + 1

2
EΛ̂,Λ[log2( Λ̂

Λ
)]

≈ log2(ln( λmx
λmn

)) + 1
2

log2( (N+1)2

2πeN
).

Proof: EΛ̂,Λ[log2
p(Λ̂|Λ)

p(Λ̂)
] = h(Λ̂)− h(Λ̂|Λ)≈ h(Λ)− h(Λ̂|Λ).

Limitations on the information rate. The bit/rate calculated
above is arguably naive, even beyond the fact that we are assum-
ing there is such a thing as an average neuron. First, under
physiological conditions, humans are constantly making deci-
sions, including novel sensory acquisitions (e.g., a saccade and
new fixation). Suppose that such a decision-making interval and
sensory reacquisition occur every second. Then, many neurons
do not complete even their first IPI. Such neurons make a
much smaller information contribution, although still positive.
To maintain average firing rate, suppose half the time a neuron
completes one IPI, one-quarter of the time two IPIs, one-eighth
of the time three IPIs, etc., per decision-making interval. Thus,
half the time a neuron does not complete a first IPI, one-quarter
of the time a neuron completes a first IPI but not a second
one, etc. Each noncompleted IPI has a bit value. Combining the
contributions for complete and incomplete IPIs produces a bit
value of 5.1 bits per second for a 1-Hz neuron. See Materials and
Methods for details.

Shot noise is potentially deleterious to bit rate as well. As
a crude approximation of shot noise affecting the signal, sup-
pose Shannon’s independent additive Gaussian channel, i.e., the

mutual information, is 1
2

log2

σ2
signal+σ

2
noise

σ2
noise

. In biophysical simula-
tions, depending on synaptic input intensity, it takes 50 to 250
NaV 1.6 activations to initiate an AP (42). Using this range
as a Poisson noise and 2,500 as the Poisson signal, the capac-
ity is much smaller than the rate of information gain, 2.8 to
1.7 bits per second. In fact, simulations with this biophysi-
cal model produce 3 bits per IPI (42). This value is probably
an underestimate by about one bit because the model did
not contain inhibition; without inhibition, synaptic excitation
rates are limited to less than 750 events to reach threshold

vs. the 2,500 here allowed by inhibition and dendrosomatic
surface area.

Discussion
Results contribute to our understanding of computation in the
brain from the perspective of Nature. Essentially, Results ana-
lyze a defined form of neural computation that is 1) based on
postsynaptic activation and that is 2) a probabilistic inference
(8). From this defined perspective, the corresponding bits per
joule are maximized as a function of N . This value of N is 2,000,
close enough to 2,500 to substantiate the latter’s use in the audit.
Likewise, it only changes the estimated synapses per neuron from
10,000 to 8,000 given a 75% failure rate.

As first introduced into neuroscience in ref. 1 and later empha-
sized by ref. 6, a certain class of bits per joule optimizations
can proceed if the denominator joule term consists of two parts:
a constant joule-consumption term added to a term in which
the joule consumption depends on the variable being optimized.
Typically, this denominator consists of 1) a constant energy-
consumption term that is independent of firing-rate, such as
resting potential, and 2) a firing-rate dependent term. However,
here resting potential is charged to the decision-making process
and does not appear in the equation while both denominator
terms are dependent on the mean firing rate. Importantly, only
the second B multiplied term of the denominator varies with N .
This particular denominator allows the N -based optimization of
Fig. 4A. By way of contrast and to relate to the demon’s optimiza-
tion, Fig. 4B calculates the computational bits/computational
joules, using the single-denominator term of computational cost.
As a result of this simplistic viewpoint of energetic costs, which
aligns with the demon’s viewpoint, Fig. 4B visualizes how the
108 discrepancy arises as the value of N moves away from the
optimized N value toward zero synapses and zero computational
energy consumption.

From Fig. 4B and its bits per joule formulation, we see that
if Nature selects for smaller N , this form of computational effi-
ciency increases exponentially. Indeed, a two-synapse neuron
with 10,000-fold less surface area and a 1,000-fold decrease in the
voltage between reset and threshold misses the demon’s value
only by 10-fold. However, using such neurons leads to other
larger cost increases if communication time is to remain con-
stant. For a particular semiquantitative analysis establishing this
point, see SI Appendix.

One reason why the bits per joule per spike of Eq. [1]
(Fig. 4A) increase so slowly as N increases is that the synaptic
inputs are assumed to be unclocked, asynchronous, and there-
fore approximately Poissonian (11). Unlike energy costs that
grow in proportion to N , the slow information growth at the rate
2−1 ln(N ) seems unavoidable (3). Indeed, for visual sensing, ref.
32 notes a similar difference in growth rates.

Although the basis of our theory is IPI coding, this hypothesis
has some relevance to optimization theories based on rate cod-
ing (3, 6). Specifically, each input to a neuron is a non-Poisson
point process with an implicit rate. However, the union of these
inputs is, to a good approximation, Poisson (11). This union of
input lines creates the neuron’s latent RV Λ. Thus, each neuron
is estimating the intensity of a local-population rate code over
the time of each of its IPIs. This may explain the similarity of bit-
rate estimates between models since, as calculated in Results and
Materials and Methods, the randomness underlying this approx-
imately Poisson signal is itself the largest source of uncertainty
(i.e., entropy). Finally, the rate-code approach (3, 6) might claim
a greater generality as it applies to many pulses whereas the cur-
rent IPI theory applies with exactitude only to the first IPI. The
theory requires extensive work for application to later IPIs in cor-
tex where neurons are receiving feedback during the generation
of later IPIs, which feedback can change the value of the neuron’s
initial input.

Levy and Calvert
Communication consumes 35 times more energy than computation in the human cortex, but both
costs are needed to predict synapse number

PNAS | 7 of 12
https://doi.org/10.1073/pnas.2008173118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
22

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008173118/-/DCSupplemental
https://doi.org/10.1073/pnas.2008173118


www.manaraa.com

Human and Rodent Energy Audits. The per-neuron values here are
relatively close to those obtained by Herculano-Houzel (26). Her
value for the gray matter energy use of human cortex is 1.32 ·
10−8 µmol of glucose per neuron per minute, which converts to
2.26 · 10−10 W per neuron in terms of ATP. Our value is 1.94
·10−10 W per neuron (SI Appendix, Table S3). This small, 16%
difference is not surprising since she uses the older glucose values
of slightly more than 20 W per brain, and we use her regional
brain weight values and cell counts.

The top–down part of the audit can do no more than limit the
total ATP available among the defined uses of ATP. This value is
then subject to partitioning across specific, functional consumers.

Staying as close to ref. 9 as sensible, newer values are used
[e.g., for conversion of glucose to ATP (13) and for the overlap-
ping Na-K conductances of the AP (21)]. Species differences also
create unavoidable discrepancies, including average firing rate;
the fraction of the time that the glutamate-primed NMDARs
are voltage activated; and, more importantly, the surface area
of rodent axons vs. human axons. Other discrepancies arise from
differences in the partitioning of energy consumers. After remov-
ing WM costs, our partitioning of GM creates three subdivisions:
computation, communication, and SynMod+. Although the par-
titioning of energy consumption is at variance with refs. 1 and 9,
this is not a problem because partitioning is allowed to suit the
question. On the other hand, estimating the cost of SynMod+

is problematic (see ouabain comments below). Moreover, the
optimization here requires a subpartitioning of SynMod+. This
subpartitioning is 1) costs based on mean firing rate exclusive of
N dependence, 2) costs based on mean firing rate multiplied by
N , and 3) purely time-dependent costs. Here the costs of synap-
tic modification, including metabotropic receptor activation and
postsynaptically activated kinases, do not fall within the present
definition of computation but are activity-dependent SynMod+

costs.
An earlier human GM energy audit (22) comes to a differ-

ent conclusion than the one found here. Although our more
contemporary empirical values and more detailed analysis point
to many initial disagreements with this study, these initial dis-
agreements offset each other; thus, ref. 22 concludes that the
GM has 3.36 ATP-W available, within 10% of our 3.09. On the
other hand, there are two rather important disagreements: 1)
the postsynaptic current associated with the average presynaptic
spike arrival and 2) the total noncomputational and noncom-
munication energy expenditures. Regarding disagreement 1, the
relative postsynaptic currents per spike differ by nearly 14-fold,
and this difference arises from three sources. First, in ref. 22
synaptic success rates are 2-fold greater than the rate used in ref.
9 and here. Second, the number of synapses is 2.2-fold greater
(we use newer values from normal tissue). Third, average synap-
tic conductance per presynaptic release is 3-fold greater than
the values here (again we use newer values) (52). See Materi-
als and Methods and SI Appendix for details underlying all of
our numbers.

Disagreement 2 arises because ref. 22 concludes that 50%
of ATP goes to processes independent of electrical potentials
(i.e., independent of computation plus communication). The ear-
lier work bases its values on ouabain studies. While there is no
argument that ouabain poisons the Na-K ATPase pump pre-
venting it from metabolizing ATP, there is clear evidence that
ouabain activates other functions known to increase ATP con-
sumption. Ouabain increases spontaneous transmitter release
(53) and depolarizes neurons. One must assume until shown
otherwise that these two effects stimulate many ATPases and
ATP-consuming processes that would not normally occur at
rest. These include internal CaATPases to handle Ca+2 influx
(54); vesicle recycling and transmitter packaging; metabotropic
receptor activation; and possibly even synaptic modification that
demands actin polymerization, membrane construction, protein

insertion, and transport of the synthesized membrane to the ends
of dendrites and axons. In sum, any increases of ATP consump-
tion will lead to underestimates of ATP used for the electrical
potential and an overestimate of the ATP devoted to what we
call SynMod+.

Our ultimate problem with ref. 22 is the two calculations of N
that it implies. Taking ref. 22’s values of failure rate and synapse
number implies that N = 8,750 while applying ref. 22’s costs to
the optimization of Eq. [1] produces N ≈ 300. In contrast, our
two values are closer to agreeing, 2,500 vs. 2,000.

General Relevance of Results.
Outside of neuroscience. Because there is some interest (55, 56)
outside of neuroscience to reproduce neurally mediated cogni-
tion on a limited energy budget, the energy audit here brings
increased specificity to a comparison between the evolved bio-
logical and the human engineered perspective. In particular,
engineers often tout brain function as consuming energy at what
they consider a modest 20 W given the difficulty they have in
reproducing human cognition. Here we provide a more precise
set of comparisons. Our computation can be compared to the job
performed by the central processing unit. Communication has
its two major forms defined here, axonal costs and presynaptic
functions, which must be compared to communication into and
out of memories plus the communication of clock pulses. Per-
haps maintenance can be compared to memory refresh costs.
However, comparing power conversion loss by a computer to
the heat generation of intermediary metabolism is challengeable
since heating is fundamental to mammalian performance. A bet-
ter comparison might be between the cost of cooling a computer
and the biological heating cost.
Inside neuroscience. Although the primary goal of the energy
audit is an estimate of the cost of computation per se, the
audit also illuminates the relative energetic costs of various
neural functions. Notably for humans, the audit reveals that
axonal resting potential costs are greater than the firing-rate
costs. This axonal rest expense is directly proportional to the
leak conductance and axonal surface area. Thus, of all of
the parameters, these two might benefit the most from bet-
ter empirical data. Regarding these large, leak-associated costs,
two additional points seem relevant. First, regarding func-
tional MRI studies that measure regional brain metabolism,
the small increases of oxygen consumption over baseline con-
sumption (57) are consistent with the high, continuous cost of
axonal leak.

Second, arguing from her data and data of other studies
(26), Herculano-Houzel presents the intriguing hypothesis that
average glucose consumption per cortical neuron per minute is
constant across mammalian species. Qualitatively, this idea is
consistent with the increase in neuron numbers along with the
decrease of firing rates found in humans vs. rats. However, it
seems that the hypothesis can be quantitatively correct only if
axonal leak conductance in humans is much lower than in ani-
mals with smaller brains and presumably shorter axons of smaller
diameters. This topic deserves more detailed exploration.

Hopefully the work here motivates further empirical work,
especially using primates, to improve the energy audit and the
calculations that ensue. Such empirical work includes better sur-
face area measurements and a better idea about the NMDAR
off-rate time constant. Finally, going beyond the average neuron,
perhaps someday there will be energy audits for the different cell
types of cortex.

Materials and Methods
Partitioning Glucose by Region and by Metabolic Fate. This section explains
the top–down calculations of Table 1. The glucose-uptake values combine
the regional uptakes, reported in terms of per 100 g of tissue from Graham
et al. (25) as copied into our SI Appendix, Table S1 along with the reported
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regional masses from Azevedo et al. (58). We choose this uptake study
because of its use of the [11C]glucose tracer and its straightforward appli-
cation to obtain regional net glucose uptakes. Multiplying regional masses
by uptake values, and converting to appropriate units as in SI Appendix,
Table S1, yields the first “Watts” column of Table 1. These glucose watts
are calculated using 2.8 MJ/mol (59). The regional uptakes are combined to
produce the brain total as illustrated in SI Appendix, Fig. S1.

Following the flow diagram of SI Appendix, Fig. S1, next we remove the
nonoxidized glucose from regional and total uptakes. We use an oxygen–
glucose index (OGI) value of 5.3 (out of 6 possible oxygen molecules per
one glucose molecule). We assume the OGI is constant across regions and
that we can ignore other, non-CO2 carbons that enter and leave the brain.
Thus, these simple glucose watts are split into oxidized and nonoxidized as
produced in Table 1 and illustrated in SI Appendix, Fig. S1.

As the energy source, the oxidized glucose is then partitioned into two
different metabolic fates: heating and ATP. Again we assume this process is
constant across regions and that the brain does not differ too much from
other regions which have been studied in greater depth. The biological con-
version is calculated using Nath’s torsional mechanism, which yields 37 ATP
molecules per molecule of glucose and 36,000 J/mol of ATP at 37 ◦C.

Computation Costs. Our “on average” neuron begins at its reset voltage
and then is driven to a threshold of −50 mV and then once again resets
to its nominal resting potential of −66 mV. Between reset and threshold,
the neuron is presumed to be under constant synaptic bombardment with
its membrane potential, Vm, constantly changing. To simplify calculations,
we work with an approximated average Vm, Vave of −55 mV; this approxi-
mation assumes Vm spends more time near threshold than reset. (Arguably
the membrane potential near a synapse which is distant from the soma is
a couple of millivolts more depolarized than the somatic membrane volt-
age, but this is ignored.) To determine the cost of AMPAR computation,
we use the ion preference ratios calculated from the reversal potential
and use the total conductance to obtain a Na+ conductance of 114.5 pS
per 200 pS AMPAR synapse as seen in SI Appendix, Table S4. [The ion-
preference ratios used for the calculations in SI Appendix, Table S4 are
calculated from the reported reversal potential value of −7 mV (60) and the
individual driving forces at this potential, -90-(-7)=-83 mV for K+ and 55-(-
7)=62 mV for Na+.] Multiplying the conductance by the difference between
the Na+ Nernst potential and the average membrane potential (VNa,Nern−
Vave) yields a current of 12.5 pA per synapse. Multiplying this current by
the SA duration converts the current to coulombs per synaptic activation,
and dividing this by Faraday’s constant gives us the moles of Na+ that
have entered per synaptic activation. Since one ATP molecule is required
to pump out three Na+ molecules, dividing by 3 and multiplying by the
average neuron firing rate and success rate yield 1.29 · 10−20 mol-ATP per
synapse per second. Multiplying by the total number of synapses (1.5 · 1014)
implies the rate of energy consumption is 0.069 W for AMPAR computa-
tion. When NMDARs are taken into account, the total computational cost
is 0.10 W (assuming that NMDAR’s average conductance is half as much
as AMPAR’s).

SI Appendix, Table S4 lists the excitatory ion fluxes mediated by AMPARs
and NMDARs. The cost of the AMPAR ion fluxes is straightforward. The cost
of the NMDAR ion fluxes depends on the off-rate time constant as well as
the average firing rate. That is, if this off-rate time constant is as slow as 200
ms and the IPI between firings of the postsynaptic neuron is 500 ms or more
(such as the 1-s interval that comes from the 1.0-Hz frequency used in the
following calculations), then most glutamate-primed NMDARs will not be
voltage activated. Thus, in contrast to the rat where the AMPAR and NMDAR
fluxes are assumed to be equal, here we assume the ion fluxes mediated by
NMDARs are half those of the AMPARs and multiply the AMPAR cost by 1.5
to obtain the final values in SI Appendix, Table S4.

The spike generator contributes both to computation and to com-
munication; fortunately, its energetic cost is so small that it can be
ignored.

Communication Costs. SI Appendix, Table S5 provides an overview of the
communication calculations, which are broken down into resting potential
costs, action potential costs, and presynaptic costs. The following sections
explain these calculations, working toward greater and greater detail.

In general, the results for communication costs are built on less-than-
ideal measurements requiring large extrapolations. For example, there do
not seem to be any useable primate data. The proper way to deter-
mine surface area is with line-intersection counts, not point counts, and
such counts require identification of almost all structures. As the reader
will note in SI Appendix, use of mouse axon diameters produces much

larger surface areas assuming fixed volume fractions, thus raising com-
munication costs and decreasing the energy available for computation
and SynMod+.
Resting potential costs. The cost of the resting potential itself is simply
viewed as the result of unequal but opposing Na+ and K+ conductances.
If other ions contribute, we just assume that their energetic costs eventually
translate into Na+ and K+ gradients. The axonal resting conductance uses
the recent result of 50 kω cm2 (23). With our surface area of 21.8 · 106 cm2

(includes axonal boutons; SI Appendix, Table S6), this produces a total
conductance of 436 S. The driving voltage for each ion is determined by
subtracting the appropriate Nernst potential from the assumed resting
membrane potential of −66 mV. Using Nernst potentials of +55 mV and −90
mV for Na+ and K+, respectively, just assume currents are equal and oppo-
site at equilibrium. Thus, conductance ratios derive from the equilibrium:
−24 mV ·gK =−121 mV ·gNa, implying gK = 5.04 gNa, and further imply-
ing gNa

gNa+gK
= 1

6.04 . The Na+ conductance times the driving voltage yields

the Na+ current, 0.121 V · 1
6.04 · 436 S = 8.73 A. Scaling by Faraday’s con-

stant implies the total Na+ influx; then divide by 3 to obtain moles of ATP
required to pump out this influx, 3.02 ·10−5 mol ATP per second. Multiplying
by 36,000 J/mol ATP yields 1.09 W, the resting potential cost.

Plasma membrane leak is a major energy expenditure, 22% of ATP-W
here compared to 13% in ref. 9. Here, however, we emphasize that this
cost is 66% of gray matter communication costs. The differences in percent-
ages arise from different interpretations of a functioning neuron and of
the meaning of certain measurements. Our distinction between the costs of
reset differs from their cost of resting potentials: Here resting cost is entirely
axonal and essentially continuous across time. Their resting cost is dendro-
somatically based and deviates from our assumption that a neuron is under
constant synaptic bombardment.
Action potential costs. Action potential costs are calculated from Na+

pumping costs (SI Appendix, Table S5). The coulombs to charge a 110-mV
action potential for the nonbouton axon start with the product of the total
GM axonal capacitance, 14.6 F; the peak voltage; and the firing rate, 1
Hz; i.e., 14.6 · 0.11 · 1.0 = 1.61 A. To account for the neutralized currents
observed by Hallerman et al. (21), multiply this by 2.28, yielding 3.66 A.

Bouton costs, although clearly part of an axon, are calculated separately
from the axon. As will be detailed later, our approximation of surface
areas treats all presynaptic structures as bouton terminaux, and rather than
assume tapering for impedance matching purposes, presume an abrupt
transition of diameters. Importantly, we assume that a bouton mediates a
calcium spike and that this spike requires only a 0.02-V depolarization to be
activated. Altogether, the rate of Na+ coulomb charging for boutons is 6.34
F ·0.02 V ·1 Hz = 0.13 A.

The sum of axonal spike Na+ and bouton charging determines the Na+

to be pumped. Faraday’s constant converts coulombs per second to moles
of charge per second, yielding a Na+ flux of 3.9 · 10−5 mol/s. Dividing by
3 converts to ATP moles per second; multiplying this value by Nath’s 36,000
J/mol ATP yields the total action potential cost of 0.47 W.

To calculate bits per joule requires WMAP costs. Assume that the oligo-
dendrocytes (especially myelogenesis) are using energy solely to support
the AP. Then we approximate that two-thirds of the 1.85-W energy goes
to WMAP, 1.23 W.

The action potential values here largely agree with ref. 18, but there are a
number of important differences. They use an old, nonmammalian value for
overlap. The neutralized current flux of the AP in mammals is 2.28 (21) at the
initial segment, far from the multiplier of 4 they use. Furthermore, the plot-
ted values in ref. 18, figure 7A are not adjusted for overlap. Ref. 18, figure
7A uses an axonal length of 1 µm; therefore, for the axonal diameter plot
point of 0.5µm, the surface area is π/2 · 10−12 m2 = 1.57 · 10−8 cm2. This
implies a capacitance of 1.57 · 10−14 F. Then the total charge needed for 0.1-
V polarization is 1.57 · 10−15 C. Multiplying by the number of charges per
coulomb yields 1.57 · 10−15 · 6.24 · 1018 = 9.8 · 103≈ 104 Na+, the plotted
value of figure 7A in ref. 18. Thus, the neutralized Na+ flux was some-
how lost when the y axis was labeled. With this understanding, our values
differ from ref. 18 only because the calculations here use the mammalian
measured overlap of 2.28.
Presynaptic AP costs. The presynaptic transmitter-associated costs are
mostly based on the values of Attwell and Laughlin (9) and of Howarth
et al. (14). The assumptions include an assumed 25% success rate of vesic-
ular release for each cortical spike (1.5 · 1014 spikes per second under the
1-Hz and 1.5 · 1014 synapses assumptions). However, in contrast to Howarth
et al. (14), which uses a number supported by observations in calyx of Held
(61) and in cell cultures (62), the observations of Stevens and Wang (20) in
CA1 hippocampal pyramidal neurons indicate that the same calcium influx
occurs for both synaptic successes and failures. Because adult hippocampal
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synapses seem a better model of cerebral cortical synapses than calyx or tis-
sue culture synapses, we use the hippocampal observations. Therefore, the
1-Hz firing rate produces a Ca2+ cost that is more than eightfold greater
than the cost of vesicle release (VR) events (SI Appendix, Table S5). The Ca2+

influx per action potential is 1.2 · 104 Ca2+ per vesicle, and assuming 1 ATP is
required to pump out each Ca2+, the Ca2+ cost is 1.2 · 104 ATPs per vesicle.
Multiplying this by 1.5 · 1014 APs per second for the gray matter, dividing by
Avogadro’s number, and finally multiplying by 36 kJ/mol ATP yields a total
presynaptic Ca2+ cost of 0.11 W.

The cost per vesicle release is determined by adding the packaging
and processing costs and then multiplying by the number of glutamate
molecules per vesicle as in refs. 9 and 14. Adding the cost of membrane
fusion and endocytosis yields a total of 5,740 ATPs per vesicle (14). This value
is multiplied by the VR events per second and divided by Avogadro’s num-
ber to obtain 3.57 · 10−7 ATP mol/s. Converting to watts yields a presynaptic
transmitter release cost of 0.01 W and a total presynaptic cost of 0.12 W for
the GM.
Synapse counts. Both computation and communication costs depend on
the number of cortical synapses. For the approach taken here, compu-
tational costs scale in a one-to-one ratio to synaptic counts while com-
munication costs scale proportionally, but with a smaller proportionality
constant.

The calculations use the Danish group’s synapse counts of 1.5 · 1014 (63).
The alternative to the numbers used here reports an 80% larger value (64);
however, their human tissue comes from nominally nonepileptic tissue from
severely epileptic patients. Since the incredibly epileptic tissue is likely to
stimulate the nearby nonepileptic tissue at abnormally high firing rates, we
find the data’s import questionable.
Estimation of surface areas from mouse and rabbit data. Here volume-
fraction data are used to estimate axon and presynaptic surface areas. As far
as we know, there are two journal-published, quantitative electron micro-
scopic studies of cerebral cortex that are suitable for our purposes: one in
rabbit (65) and one in mouse (66). (Although structural identifications do
not neatly conform to our simplifying cylindrical assumptions, we can still
use their data to direct and to check our estimates.)

Chklovskii et al. (66) report a 36% volume fraction for small axons, 15%
for boutons, 11% for glia, 12% for other, and 27% for dendrites and spines
as read from their graph in their figure 3. They purposefully conducted their
evaluations in tissue that lacked cell bodies and capillaries. Because cortical
tissue does contain cell bodies and capillaries, this will produce a small error
for the average cortical tissue. More worrisome is the size of “other,” half
of which could be very small axons.

The quantification by Schmolke and Schleicher (65) examines the rab-
bit visual cortex. Their evaluation partitions cortex into two types of tissue:
that with vertical dendritic bundling and that which lacks dendritic bundling
(they do not seem to report the relative fraction of the two types of cortex,
but we assume the tissue without bundling dominates over most of cor-
tex). For boutons and axons, respectively, they report volume fraction values
within bundles of 17 and 20% and values between bundles of 26 and 29%.

The 30% axonal volume fraction used in SI Appendix, Table S6 is a com-
promise between the ref. 66 value of 36% and the two values from ref.
65. The average of the within-bundle and between-bundle volume frac-
tions from ref. 65 is used for boutons. Specifically, the approximated human
volume fractions are 1) 22% boutons; 2) 30% small axons; 3) 11% glia;
4) 5% neuronal somata; 5) 3% vasculature; and 6) 29% dendrites, spine-
heads, and spine-stems, totaling 100%. (It is assumed that standard fixation
removes almost all of the physiological extracellular space and, naively,
shrinkage/swelling has little relative effect on these values.) The calculations
are essentially unaffected by the two conflicting bouton volume fractions
since the difference between the two possible calculations is negligible.

SI Appendix, Table S6 lists the critical values, the intermediate values for
the cylindrical model to fit the data, and finally the implications for the
relevant membrane capacitance.
Cylindrical model approximations for axons and boutons.

Axons. By making a cylindrical assumption and assuming the average
small axon’s diameter is 0.50µm (radius = 0.25 · 10−4 cm), a small extrap-
olation of a cross-species result in the cerebellum (67), we can estimate
the total surface area of these unmyelinated axons using the 30% vol-
ume fraction to calculate the length of an average axon, Lax . The total
volume (cm3) occupied by all such axons is Lax · 1.5 · 1010 ·π(0.25 · 10−4)2.
Dividing this volume by the volume of the GM (632 cm3) must equal the
volume fraction, 0.3. Solving yields Lax = 6.44 cm. Then net surface area
is calculated using this length and the same diameter and number of
neurons, 6.44 · 1.5 · 1010 ·π · 0.5 · 10−4 = 1.52 · 107 cm2. For an independent
calculation of axon length based on light microscopic data, see SI Appendix.

Boutons. The surface area estimates also treat boutons (Btn) as uniform
cylinders of a different diameter. Assume that cortical presynaptic structures
in humans are no bigger than in any other mammalian species. To determine
bouton surface area, assume a bouton diameter (dpb) 1.1 µm and height
(hpb) 1.0 µm. Denote the total number of synapses in the gray matter as
ngm (1.5 · 1014). (Note that the cylinder area of interest has only one base.)
Then, with the formulation Apb = ngmπ(dpbhpb + ( 1

2 dpb)2), the bouton sur-
face area works out to Apb = 1.5 · 1014π(1.1 µm · 1.0 µm + (0.55 µm)2) =

6.61 · 106 cm2 (SI Appendix, Tables S6 and S7).
We assume a bouton accounts for only one synapse. However, larger

boutons can contact multiple, distinct postsynaptic neurons. Thus, the small
cylinders, as individual synapses, are an attempt to approximate such presy-
naptic configurations. See SI Appendix, Table S8 for more details and for the
effect of overestimating areas.

Oxidized vs. Nonoxidized Glucose. Arteriovenous blood differences indicate
that insufficient oxygen is consumed to oxidize all of the glucose that is
taken up by the brain. Supposing glucose is the only energy source, it takes
six O2s for complete oxidation. The calculations use an OGI value of 5.3 (68).
Other values from arteriovenous differences are found in the literature (69–
71). Even before these blood differences were observed, Raichle’s laboratory
proposed as much as 20% of the glucose is not oxidized (27).

Glucose to ATP Based on Nath’s Theory. SI Appendix, Table S2 offers the
reader a choice between Nath’s torsional conversion mechanism of glu-
cose to ATP (13, 72, 73) and the conventional conversion to ATP based on
Mitchell’s chemiosmotic theory (74). According to Nath, the minimum num-
ber of ATP molecules produced per molecule of glucose oxidized is 32, and
this includes mitochondrial leak and slip (13). Nath’s calculations are based
on free-energy values under physiological conditions. However, his calcu-
lations are recent while the standard model has been taught for decades,
although not without controversy (75). The standard textbook number for
this conversion is 33 ATPs per molecule of glucose before accounting for
mitochondrial proton leak and slip. Since leak is often assumed to consume
20% of the energy that might have gone to ATP production in oxidative
phosphorylation (9, 76), the Mitchell conversion number is reduced from 33
to 27 molecules of ATP (2 ATPs are produced by glycolysis and 2 by the Krebs
cycle, so this 20% reduction applies only to the ATP produced in the electron
transport chain).
SynMod+. Here SynMod+ is not directly calculated. Rather it is the residual
of the energy available after removing the above uses. The assumed subpar-
titioning occurs as follows. Assume 10% of this goes to time proportional
costs; assume the postsynaptic fraction, accounting for metabotropic acti-
vations, receptor modification, and actin polymerization–depolymerization
cycles, equals 0.134 W, which is activity and synapse number dependent.
The remainder, devoted to synaptogenesis and firing-rate dependent axonal
and dendritic growth (e.g., membrane construction, protein insertion, and
axo- and dendro-plasmic transport) is just activity dependent.

Proofs. The proof of Lemma 2a is just a textbook change of variable from

one density to another (77), where dt = N2

(N+1)λ̂2 dλ̂; to prove Corollary 1

and the first equality of Lemma 2b, use Lemma 2a to calculate the appropri-
ate conditional moments, which Mathematica obliges; to prove the second
equality of Lemma 2b, use Lemma 1 to calculate the indicated conditional
moment.
Parameterizing the marginal prior p(λ). As derived from first principles
(8), the only known, consistent marginal prior of the latent RV is p(λ) =

(λ ln( λmx
λmn

))−1 where the bounds of the range of this RV, and thus its normal-
izing constant, are the subject of empirical observations and the required
definition λ∈ (0<λmn <λmx <∞).

From the energy audit, use the 1-Hz average firing rate. Then E[Λ], the
mean marginal total input firing rate, is 104/s. Now suppose that the rate of
spontaneous release is 1 Hz over these 104 synapses, giving us λmn = 1. With
one unknown in one equation, E[Λ] = λmx−λmn

ln(λmx
1 )

= 10,000, Mathematica

produces λmx ≈ 116,672, and the prior is fully parameterized.
Adjusting the bit-rate calculation for multiple IPIs per DMI. The 7.48 bits
per IPI apply only to a neuron’s first IPI. Later spikes are worth consider-
ably less using the current simplistic model of a fixed threshold and no
feedback. Moreover, while maintaining the average firing rate, we might
suppose that only half the time a neuron completes a first IPI, half of
these complete a second IPI, and so on. Thus, the average number of spikes
per DMI remains nearly one. With a fixed threshold, the bit values of
the later spikes are quite small. The values of the second through fourth
spikes are { 1

2 log2( 2N
N ), 1

2 log2( 3N
2N ), 1

2 log2( 4N
3N )}, which gives ca. 0.35 bits.
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However, complementing the completion of the first IPI is, half the time,
the bit contribution of an uncompleted IPI, 0.5 · 1 and for the one-quarter
of the time a neuron produces a first IPI but not a second one, and so on
for later IPIs. The summed value of these nonfirings approaches 1 bit. Then,
7.48/2 + 0.35 + 1≈ 5.1 bits.
Shot noise can affect bit rate but not as much as the signal. As measured
in the biophysical simulations (42), the most deleterious degradation of a
neuron’s computation arises not from thermal noise or shot noise (43), but
from the neuron’s input signal itself. Here is a calculation consistent with
this biophysical observation.

Using stochastic NaV 1.2 and NaV 1.6 channels in a biophysical model of
a rat pyramidal neuron, it is possible to observe shot noise and to estimate
the number of such channels that are activated at threshold. With relatively
slow depolarization, there are fewer than 250 channels on when thresh-
old is reached, and this number of channels seems to contribute less than
1.6 mV (figure 5 in ref. 42). Thus modeling channel activation as a Poisson

process with rate 250 and individual amplitudes of 6.4 µV, Campbell’s theo-
rem (78) produces the variance; this variance is less than 250 · (6.4 · 10−6)2 =

1.02 · 10−8. The same calculation for the input excitation yields a variance
of 2,500 · (6.4 · 10−6)2 = 1.02 · 10−7, a 10 : 1 ratio.
Numerically based optimization calculations. Optimizing the bits per joule
equation uses Mathematica. Treat N, the average number of events per IPI,
as a continuous variable. Then to optimize, take the derivative, dN, of the
single-neuron, single-IPI bit per joule formulation. Set the numerator of this
derivative equal to zero and solve for N using Mathematica’s NSolve.

Data Availability. All study data are included in this article and/or SI
Appendix.
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